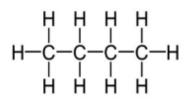
WJEC AS Organic Chem

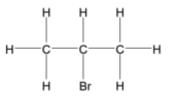
SYNOPTIC 2.4-2.8


IGC HK Exam

Isomers

Structural Isomer

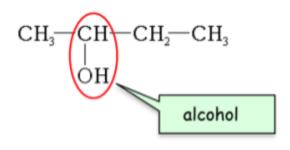
Chain: Straight / Branch

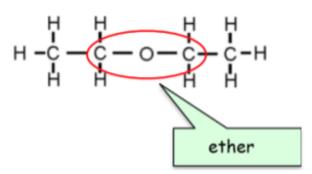


butane

methylpropane

Positional: Functional Group is in different position





1-bromopropane

2-bromopropane

Functional Group: Different functional groups (eg: alcohol and ether)

Geometric Isomer

"These are two different groups attached to each carbon atom on either side of the double bond. There is no rotation around a double bond"

Cis-Trans Notation

Cis - Adjacent Trans - Across

trans-1,2-dichloroethene

cis-1,2-dichloroethene

E-Z Notation

Higher atomic number higher priority. look at highest atomic number when it is same

- Z (Z)ame Side
- E Opposite Side

Z 1-bromo-2-chloro-1-fluoroethene

E 1-bromo-2-chloro-1-fluoroethene

Alkane

Free Radical Substitution

Initiation

Condition

- UV Light
- Vapour Phase Reaction

Homolytic Fission

Propagation

A radical attacking alkane forming another radical

1.
$$CH_4 + Cl \rightarrow CH_3 + HCl$$

2. $CH_3 + Cl_2 \rightarrow CH_3Cl + Cl$

Termination

Two free radicals collide which brings to an end of reaction.

$$Cl_1 + Cl_2 \rightarrow Cl_2$$

 $\cdot CH_3 + Cl_1 \rightarrow CH_3Cl_3$
 $\cdot CH_3 + \cdot CH_3 \rightarrow CH_3CH_3$

Alkene

Electrophilic Addition

Electrophile Example

- Br₂
- H-Br

Condition

- Room temperature
- Bromine in a nonpolar solvent

Hydrogenation

Adds H₂ to the C=C double bond

Condition

Catalyst: NickelTemperature: 100°C

- Pressure: 3-5 atm

Margarine

Hydrogenation of fats

Halogenoalkane

(S_{N2}) Nucleophilic Substitution

Nucleophiles: :OH⁻ (most common) :NH₃ :CN⁻

Reaction with NaOH

Conditions

- Aqueous NaOH solution
- Reflux
- Propanone as a mutual solvent

Reaction with KCN

Conditions

- Alcoholic KCN solution
- Reflux

Reaction with Ammonia

Conditions

- Concentrated alcoholic ammonia solution
- Heated <u>under pressure</u> in a <u>sealed tube</u>

H-C-C-C-W-H H-C-C-C-C-N-H H-C-C-C-C-C-N-H H-C-C-C-C-N-H H-C-C-

(E₂) Elimination Reaction

Conditions

- NaOH in ethanol solvent
- Reflux (Heat)

OH ion act as a base not a nucleophile

The C adjacent to the C-X must have a H attached for the H-X to be eliminated

Alcohol

Preparation of Alcohols

Direct Hydration (From Alkene to Alcohol)

Condition

- Phosphoric acid on silica gel catalyst
- 300°C
- 60-70 atm

Dehydration Alcohol to Alkenes (Elimination)

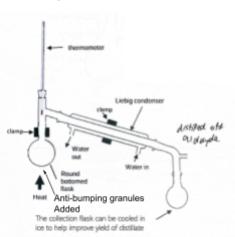
Condition

- Concentrated H₂SO₄ (dehydration agent + catalyst)
- Heat to 180°C

Manufacture of Ethanol from Ethene by Fermentation (Batch Process)

- No air (anaerobic condition)
- Kept under body temperature (25-40°C)
- Catalyst: Yeast / Zymase

$$C_6H_{12}O_{6(aq)} \xrightarrow{yeast} 2C_2H_5OH_{(aq)} + 2CO_{2(aq)}$$


Oxidation of Alcohols

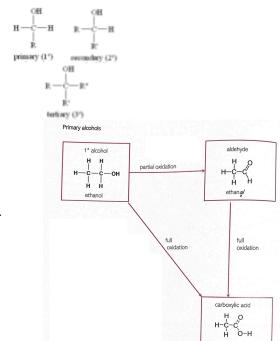
Condition

- Acidified Potassium Dichromate
- Concentrated Sulphuric Acid (Dehydrating Agent)

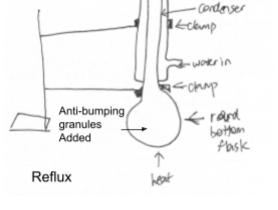
Primary Alcohol

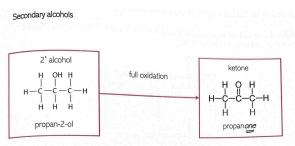
- 1. Partial Oxidation
- Distill out the aldehyde as it forms to prevent further oxidation to carboxylic acid
- Excess alcohol
- 2. Full oxidation
- Reflux
- Excess oxidising agent to ensure maximum yield of carboxylic acid

Secondary Alcohol


Condition

- Potassium Dichromate
- Conc Sulphuric Acid
- Reflux


Tertiary Alcohol


NO Reaction

As it would require breaking of C-C bond

ethanoic acid

Reaction of Carboxylic Acid

With Magnesium

$$2CH_3COOH_{(aq)} + Mg_{(s)} -> (CH_3COO^-)_2Mg^{2+} + H_{2(g)}$$

With Sodium Hydroxide

$$CH_3COOH_{(aq)} + NaOH_{(aq)} \rightarrow CH_3COO-Na^+_{(aq)} + H_2O_{(i)}$$

With Carbonates and Hydgoencarbonates

$$CH_3COOH_{(aq)} + NaHCO_{3(aq)} -> CH_3COO-Na_{(aq)}^+ + H_2O_{(l)} + CO_{2(g)}^-$$

Conversion to Esters (Carboxylic Acid -> Esters)

Conditions

- H₂SO₄ catalyst (dehydrating agent = removing water)
- Reflux
- Anhydrous ZnCl₂ (absorbs water and push the position of equilibrium to right)

Naming: [Alcohol]+yl [Carboxylic Acid]+oate

Summary

Alkanes

- Free Radical Substitution

Alkenes

- Electrophilic Substitution
- Hydrogenation

Halogenoalkane

- Nucleophilic Substitution
- Elimination

Alcohol

- Direct hydration
- Fermentation
- Dehydration
- Oxidation
- Esterification
- Elimination